

How accurate is my air quality monitor?

21st April 2024, Dr. Anika Krause

Concepts of accuracy and precision

Experiments to determine sensor performance

How to quantify accuracy & precision

What's an acceptable error?

Examples

Precision versus accuracy

Precision refers to the consistency and repeatability of measurements, regardless of how far these are from the true value.

Accuracy, on the other hand, refers to how close a measurement is to the true or target value, regardless of whether it's consistently reproducible.

Place sensor in an airtight box

Concentration = $20 \ \mu g/m^3$

Fill box with a known pollution concentration.

Low accuracy, low precision

High accuracy, low precision

Low accuracy, high precision

High accuracy, high precision

Concentration = $20 \ \mu g/m^3$

Concentration = $20 \ \mu g/m^3$

Concentration = $20 \ \mu g/m^3$

Accuracy (Average) difference between measurement and true value. The smaller the difference (=error), the higher the accuracy.

Concentration = 20 μ g/m³

Accuracy (Average) difference between measurement and true value. The smaller the difference (=error), the higher the accuracy.

Concentration = 20 μ g/m³

Accuracy (Average) difference between measurement and true value. The smaller the difference (=error), the higher the accuracy.

Low accuracy, high precision

Concentration = $20 \ \mu g/m^3$

Precision (Average) distance of the measurements from the average value.

The narrower the distribution, the higher the precision.

Practical considerations

Practical considerations

- it's complicated...

Stable-and known PM concentration

Could still measure precision?

For this, the concentration just needs to be stable

Practical considerations

Advantage of low-cost sensors: You can have many!

Practical considerations

Advantage of low-cost sensors: You can have many!

Co-location with reference

How to measure the accuracy of a sensor?

How to measure the accuracy of a sensor?

Mean Absolute Error

Alternative parameter: Root Mean Square Error

- Measure of the average error of a sensor (like MAE)
- Always higher or equal to MAE → stricter criterion
- Recommended by US EPA

Good Sensor vs. Bad Sensor

BAD COP BAD COP

From: The Lego Movie / https://hero.fandom.com

Clean vs. Polluted

Example I: Good sensor vs. bad sensor

Good sensor

Bad sensor

•••• MAE = $1.5 \,\mu g/m^3 \, \cdots \, RMSE = 1.7 \,\mu g/m^3$

••• MAE = $10.4 \,\mu g/m^3 \cdots RMSE = 12.0 \,\mu g/m^3$

Example I: Good sensor vs. bad sensor

Bad sensor Good sensor Reference (true value) Reference (true value) — Sensor — Sensor hg m⁻³ PM_{2.5} / µg m⁻³ 100 100 50 The higher the error of the sensor (MAE / RMSE), the lower the accuracy. 0 Difference / µg m⁻³ 30 20 10 Differe Nov 18 Nov 19 Nov 20 Nov 21 Nov 18 Nov 19 Nov 20 Nov 21

•••• MAE = $1.5 \,\mu g/m^3 = 0.7 \,\mu g/m^3$

···· MAE = 10.4 μg/m³ ··· RMSE = 12.0 μg/m³

Less polluted

More polluted

Less polluted

More polluted

Less polluted

More polluted

Error has relatively high impact in cleaner environment

Less polluted

Normalised RMSE

- = RMSE / average concentration
- \rightarrow helps to compare sensors across different environments

Recap Accuracy

How far is a sensor from true value?

Determined via co-location with reference.

Quantification via the mean error (MAE / RMSE).

Normalise to compare across different locations.

How to measure the **precision** of a sensor?

How to measure the precision of a sensor?

Precision: Distance of the measurements from the average value

Repeated measurements @ stable concentration

No stable concentration!

Reproducibility:

The consistency of measurements obtained from multiple sensors placed in the same location

Reproducibility:

The consistency of measurements obtained from multiple sensors placed in the same location

Precision:

Spread of a sensor's measurements around a constant value.

Spread of multiple sensors around their average value

$$c_{mean} = \frac{1}{x} \sum_{x} c_{sensor x}$$

The narrower the spread around the mean, the bigger the reproducibility.

Precision

"Stability" of measurements over time; Absence of noise.

ᠿ

Consistency:

Different sensors measure the same values.

30

Reproducibility:

Co-located sensors measure the same. \rightarrow **Requires precision and consistency.** (Hence, the EPA refers to it as precision.)

The narrower the spread around the mean, the bigger the reproducibility.

Standard Deviation (SD)

= Measure for width of spread

"Error across sensors"

Standard Deviation

The lower the SD, the higher the precision.

Math "fun fact": The calculation is the same as for the RMSE, but you use the mean concentration instead of the reference concentration.

Polluted vs. "clean"

Less polluted

More polluted

Normalised SD

= SD / average concentration

= "Coefficient of variation" (CV)

²⁰⁰ Wd 100 SD = 1.5 μg/m³

 $CV = 1.5 \,\mu g/m^3 / 19 \,\mu g/m^3 = 7.9\%$

 $CV = 1.5 \,\mu g/m^3 / 219 \,\mu g/m^3 = 0.7\%$

03:10

Recap precision

What's the spread of the measurements

Determined via co-location of multiple sensors

Quantification via Standard Deviation

Normalise to compare across different locations

What's an acceptable error?

EPA target values

Precision	Standard Deviation (SD) -OR-	$\leq 5 \ \mu g/m^3$	
	Coefficient of Variation (CV)	≤30%	
Error	Root Mean Square Error (RMSE) or Normalized Root Mean Square Error (NRMSE)	$\frac{RMSE \le 7 \ \mu g/m^3 \ or}{NRMSE \le 30\%^{\dagger}}$	

From Table 4-2: Recommended Performance Metrics and Target Values for PM2.5 Air Sensors Used in Ambient, Outdoor, Fixed Site, NSIM Applications. **All values for 24h averaged data.**

Further aspects of sensing performance: Linearity (R²), Bias (Slope, intercept)

Is an 30% error to much?

Real world examples of sensor performance assessment

Real world examples

Precision of AirGradient indoor monitors in testing chamber

SD across all sensors: \pm 1.6 µg/m³ < 5 µg/m³ \rightarrow within EPA guidelines Average concentration of test run: 14.8 µg/m³ CV = 1.6 µg/m³ / 14.8 µg/m³ = \pm 10.8% < 30% \rightarrow within EPA guidelines Precision of AirGradient indoor monitors in testing chamber

Accuracy of AirGradient outdoor monitor in Chennai

RMSE = \pm **10.0 µg/m³** Average concentration of test run: 15.6 µg/m³ **nRMSE** = 10.0 µg/m³ / 15.6 µg/m³ = \pm **64.5%**

> 7 μ g/m³ \rightarrow not within EPA guidelines > 30% \rightarrow not within EPA guidelines

Accuracy of AirGradient outdoor monitor in Chennai

RMSE = \pm **10.0 µg/m³** Average concentration of test run: 15.6 µg/m³ **nRMSE** = 10.0 µg/m³ / 15.6 µg/m³ = \pm **64.5%**

More information about linearity and sensor calibration: https://youtu.be/b5mSJSS9i_A?feature=shared https://youtu.be/CXueV0Am80Y?feature=shared Accuracy of calibrated AirGradient outdoor monitors in Chennai

RMSE = \pm 4.4 µg/m³

Average concentration of test run: 15.6 μ g/m³ **nRMSE** = 4.4 μ g/m³ / 15.6 μ g/m³ = ± **28.2** % Accuracy of calibrated AirGradient outdoor monitors in Chennai

RMSE = ± **4.4 µg/m³** Average concentration of test run: 15.6 µg/m³ **nRMSE** = 4.4 µg/m³ / 15.6 µg/m³ = ± **28.2 %**

< 7
$$\mu$$
g/m³ \rightarrow within EPA guidelines

< 30% \rightarrow within EPA guidelines

Accuracy of calibrated AirGradient outdoor monitors in Chennai

Summary

	Definition	Experiment	Performance parameter	EPA recom- mendation	Improve via
Precision	Consistency of measurements.	Sensor - sensor co-location	SD, CV	≤ 5 μg/m ³ , ≤ 30%	Averaging
Acccuracy Reference (true value) - Sensor 500 500 500 500 500 500 500 50	Agreement of measurement with true value.	Reference - sensor co-location	RMSE, nRMSE, MAE	≤ 7 μg/m ³ , ≤ 30%	Calibration

Questions?

Mean Absolute Error vs. Root Mean Square Error

RMSE > MAE (outliers)

Larger difference between RMSE and **MAE when outliers**

occur.