

AirGradient OpenAir Temperature and RH correction

20th March 2024, Dr. Anika Krause

Temperature correction The problem The reason Can we correct for it? The solution How well does it work?

RH correction

Outlook

The problem

Temperature error at low temperatures

The reason

Impact of sensor position

Fig. 1: The temperature sensor is integrated in the PM module of the AirGradient monitor.

Impact of sensor position - experiment

Fig. 1: The temperature sensor is integrated in the PM module of the AirGradient monitor. To test the impact of the sensor position, an additional sensor was added outside of the monitor box. Both sensors were compared to a reference device.

The reason

Impact of sensor position - experiment

Fig. 2: Measurements of the temperature sensor integrated inside the PM module (blue) and outside of the monitor box (green) compared to reference measurements (red).

The reason

Impact of sensor position - experiment

Fig. 2: Measurements of the temperature sensor integrated inside the PM module (blue) and outside of the monitor box (green) compared to reference measurements (red).

Temperature sensor itself is accurate

 \rightarrow Deviation is due to sensor position

BUT

- Integration into PM module allows more accurate PM readings
- Internal temperature correlates well with external
 - \rightarrow Can be corrected?

Can we correct for it?

Reproducibility analysis Is the temperature error consistent?

Monitor-monitor agreement

Fig.3: Two co-located OpenAir monitors in Ottawa, Canada. Time plot of the two temperature measurements.

Monitor-monitor agreement

Fig.3: Two co-located OpenAir monitors in Ottawa, Canada. Left: Time plot of the two temperature measurements. Right: Scatterplot between the two sensors.

- Scatterplot: The closer the data points to the 1:1 line, the higher the agreement between the sensors
- **R²** measure of the linear correlation. **Ideal agreement:** R² = 1

You can find more information about sensor performance evaluation in our <u>blog</u> or <u>voutube channel</u>.

Average difference between two sensors

Fig.3: Two co-located OpenAir monitors in Ottawa, Canada. Left: Time plot of the two temperature measurements.

Average difference between two sensors

Average difference between two sensors

Root Mean Square Error (RMSE) - Measure for average difference between two measurements

• High linearity ($R^2 > 0.99$)

✓ Small difference between sensor readings (RMSE = 0.4°C)

• High linearity ($R^2 > 0.99$)

Small difference between sensor readings (RMSE = 0.4°C)

High reproducibility.

If we can correct the temperature readings for one monitor, it will also work with the other.

Small difference between sensor readings (RMSE = 0.4°C)

Sensor 1 -5°C -11°C Sensor 2 -5°C -11°C Sensor 3 -5°C -11°C Sensor 4 -5°C -11°C Sensor 5 -5°C -11°C

Only one monitor pair

High reproducibility.

If we can correct the temperature readings for one monitor, it will also work with the other.

Only one location

Co-location Project

Fig. 4: Co-location sites of the AirGradient outdoor monitor (Open Air)

Co-location Project

- Performance testing in > 25 different locations
- Large scientific network
- Reproducibility analysis and comparison with certified reference instruments

Reproducibility analysis across co-location sites

Monitor-monitor agreement: Fazit Ottawa

High linearity (R² > 0.99)

✓ Small difference between sensor readings (RMSE = 0.4°C)

High reproducibility.

If we can correct the temperature readings for one monitor, it will also work with the other.

Do analysis for more co-location sites

Reproducibility analysis across co-location sites

Monitor-monitor agreement: Fazit Ottawa

High linearity (R² > 0.99)

✓ Small difference between sensor readings (RMSE = 0.4°C)

Compare more than two monitors \rightarrow average R² and RMSE

High reproducibility.

If we can correct the temperature readings for one monitor, it will also work with the other.

Only one location

Do analysis for more co-location sites

City	Country	Mean R ²	Mean RMSE / °C
Anacortes	USA	0.98	± 0.63
Bellingham	USA	0.99	± 0.63
Chennai	India	1.00	± 0.24
Chiang Mai	Thailand	0.99	± 0.63
Duebendorf	Switzerland	1.00	± 0.14
Guatemala City	Guatemala	0.99	± 0.65
London (Marylebone Road)	UK	1.00	± 0.30
London (Honor Oak Park)	UK	0.99	± 0.61
Ottawa	Canada	1.00	± 0.41
Cambridge	UK	1.00	± 0.28
Vanderbijlpark	South Africa	1.00	± 0.52

Table 1: Reproducibility of AirGradient temperature measurements. Performance characteristics are averaged over all sensors in each location.

City	Country	Mean R ²	Mean RMSE / °C			
Anacortes Bellingham	USA USA	0.98 0.99	± 0.63 ± 0.63			
Che Chia Due Gua → temperat	CONCLUSION Excellent agreement between AirGradient monitors → temperature error can be corrected for					
Longon (margiesone read)	UN	1.00	2 0.00			
London (Honor Oak Park)	UK	0.99	± 0.61			
Ottawa	Canada	1.00	± 0.41			
Cambridge	UK	1.00	± 0.28			
Vanderbijlpark	South Africa	1.00	± 0.52			

Table 1: Reproducibility of AirGradient temperature measurements. Performance characteristics are averaged over all sensors in each location.

The	probl	em				
		\rightarrow			u¥k	
	The	reason				
	Temı insul by th	Reproducibility analysis			-	→ 🔔
	sens	City	Country	Mean R ²	Mean RMSE / °C	
	BUT: PM r	Anacortes Bellingham	USA USA	0.98 0.99	0.63 0.63	
	more Che CONCLUSION readi Chi Excellent agreement between AirGradient monitors Due → temperature error can be corrected for					
		Gua				
		London (Honor Oak Park)	UK	0.99	0.61	
		Ottawa Cambridge	Canada UK	1.00	0.41	
		Vanderbijlpark	South Africa	1.00	0.52	
		Table 1: Reproducibility of AirGradient tem	perature measurements. Pe	rformance character	istics are averaged over	

Comparison with reference

Compare monitor readings with reference

Comparison with reference

Fig. 5: Scatterplot of AirGradient temperature measurements and their corresponding reference values across multiple locations (Bellingham, USA; Chennai, India; Cambridge, UK; Edmonton, Canada; Copenhagen, Denmark).

Comparison with reference

Fig. 5: Scatterplot of AirGradient temperature measurements and their corresponding reference values across multiple locations (Bellingham, USA; Chennai, India; Cambridge, UK; Edmonton, Canada; Copenhagen, Denmark).

The Solution

Fig. 5: Scatterplot of AirGradient temperature measurements and their corresponding reference values across multiple locations (Bellingham, USA; Chennai, India; Cambridge, UK; Edmonton, Canada; Copenhagen, Denmark).

The Solution

Fig. 5a: Scatterplot of AirGradient temperature measurements and their corresponding reference values below 10°C.

The Solution

Fig. 5b: Scatterplot of AirGradient temperature measurements and their corresponding reference values above 10°C.

The Solution: Raw vs. calibrated

Fig. 5: Raw AirGradient vs reference.

Correction code (R script):

The Solution: Raw vs. calibrated

Fig. 5: Raw AirGradient vs reference.

Fig. 6: Calibrated AirGradient vs reference.

Correction code (R script):

Fig. 2 and 2a: Temp sensor integrated in PM module (blue) and outside of the monitor box (green) compared to reference measurements (red). Top: Raw AirGradient data. Bottom: Calibrated AirGradient data.

Fig. 2 and 2a: Temp sensor integrated in PM module (blue) and outside of the monitor box (green) compared to reference measurements (red). Top: Raw AirGradient data. Bottom: Calibrated AirGradient data.

Calibration compensates for the sensor placement inside the monitor box.

	RMSE raw	RMSE calibrated	# datapoints
Cold temp < 10°C	± 4.6°C	± 0.9°C	19,768
Warm temp > 10°C	± 2.1°C	± 0.8°C	322,117
Full data set	± 2.3°C	± 0.8°C	341,718

Table 2: Comparison of the average temperature error before and after the monitor calibration.

	RMSE raw	RMSE calibrated	# datapoints
Cold temp < 10°C	± 4.6°C	± 0.9°C	19,768
Warm temp > 10°C	± 2.1°C	± 0.8°C	322,117
Full data set	± 2.3°C	± 0.8°C	341,718

Table 2: Comparison of the average temperature error before and after the monitor calibration.

Temperature error has been successfully corrected!

Correction is implemented in latest AirGradient firmware.

Reference

Fig. 7: Raw AirGradient (AG) temperature data vs. reference measurements by location.

39

Fig. 8: Calibrated AirGradient (AG) temperature data vs. reference measurements by location.

Fig. 8: Calibrated AirGradient (AG) temperature data vs. reference measurements by location.

41

Effect of direct sunlight: Vanderbijlpark, South Africa

Night data

All data between 20:00 and 06:00

AirGradient calibrated temp / °C

Day data

All data between 06:00 and 20:00 _

Fig. 9: Calibrated AG vs. reference in Vanderbijlpark coloured by cloud coverage (in %). Nighttime data only.

Effect of direct sunlight: Vanderbijlpark, South Africa

Fig. 9: Calibrated AG vs. reference in Vanderbijlpark coloured by cloud coverage (in %). *Nighttime* data only.

Fig. 10: Calibrated AG vs. reference in Vanderbijlpark coloured by cloud coverage. *Daytime* data only.

Effect of direct sunlight: Vanderbijlpark, South Africa

Fig. 9: Calibrated AG vs. reference in Vanderbijlpark coloured by cloud coverage (in %). *Nighttime* data only.

Fig. 10: Calibrated AG vs. reference in Vanderbijlpark coloured by cloud coverage. *Daytime* data only.

RH calibration

RH = 45% RH = 60%

In some cases difference of 15% - 20%

Reproducibility (is the error consistent?)

City	Country	R ²	RMSE (percentage points)
Anacortes	United States	0.96	± 2.1%
Bellingham	United States	0.98	± 1.9%
Chennai	India	1	± 1.3%
Chiang Mai	Thailand	0.99	± 3.5%
Duebendorf	Switzerland	1	± 0.9%
Guatemala City	Guatemala	0.99	± 1.5%
London (Marylebone Road)	United Kingdom	0.96	± 2.5%
London (Honor Oak Park)	United Kingdom	0.99	± 1.8%
Ottawa	Canada	0.99	± 2.0%
Cambridge	United Kingdom	1	± 2.5%
Vanderbijlpark	South Africa	1	± 1.1%

Table 3: Reproducibility of AirGradient relative humidity measurements. Performance characteristics are averaged over all sensors in each location.

Reproducibility (is the error consistent?)

City	Country	R ²	RMSE (percentage points)
Anacortes	United States	0.96	± 2.1%
Bellingham	United States	0.98	± 1.9%
Chennai	India	1	± 1.3%
ChiaHigh reprodDue→ RH e	ucibility between rror can be corre	RH sensors cted for	о 6 6
London (Marylebone Road)	United Kingdom	0.96	± 2.5%
London (Honor Oak Park)	United Kingdom	0.99	± 1.8%
Ottawa	Canada	0.99	± 2.0%
Cambridge	United Kingdom	1	± 2.5%
Vanderbijlpark	South Africa	1	± 1.1%

Table 3: Reproducibility of AirGradient relative humidity measurements. Performance characteristics are averaged over all sensors in each location.

Calibration

Fig. 11: Raw AirGradient RH measurements vs reference.

Calibration


```
Step 1: Calibration
RH(calib) = RH(raw) * 1.259 + 7.34
```

Step 2: Cut data > 100% RH(final) = if {RH(calib) > 100} then {RH(calib) = 100}

Analysis will be continued while dataset is growing \rightarrow **Potential updates in the future**

- Temperature sensors are highly reproducible and accurate
- Impact of monitor case can be compensated for via calibration (2 temp ranges)
- Direct sunlight impacts temperature readings

 RH accuracy can be improved by simple linear calibration

And now?

Performance analysis of the...

- PM sensor: Ongoing
- CO₂ sensor: Co-locations initiated

TVOC & NOx sensors:

Define strengths & limitations + use cases in outdoor environments

Questions?

